

Creating urban forest canopy time series

Joanne Chia 28 February 2019

www.data61.csiro.au

Current Urban Monitor Dates

- 2009, 2014, 2016,
- What can we do with the time-series data?
- This talk will present 2 concepts on how the time series can be used
- Concept #1: Is the change in canopy cover estimates between 2 dates for each lot significant, especially where the changes are small?
- Concept #2 : Reducing variance in estimates using full time series data

Concept #1

Is the change significant?

- Focus on changes in estimates that are small
- Factors contributing to change include:
 - climate (wet summer, dry summer)
 - photography (noise)

Concept #1

Idea: compute upper and lower bound of each estimate - 95% confidence interval

- A 95% confidence interval is a range of values that you can be 95% certain contains the true value.
- With large samples, you know the true value with much more precision than you do
 with a small sample, so the confidence interval is quite narrow when computed
 from a large sample.
- A narrow confidence interval implies that there is a smaller chance of obtaining an observation within that interval, therefore, our accuracy is higher.

Example: 3m – 8m canopy cover

Plot of 95% confidence interval

- 2009 95% CI (11.22%, 12.08%)
- 2014 95% CI (10.20%, 11.03%)
- 2016 95% CI (10.50%, 11.34%)
- To determine if the change between 2014 and 2016 is significant, we can calculate the 95% CI of the difference in canopy estimates between the 2 dates.
- The resulting CI is (-0.289, 0.890) which means the change is not statistically significantly different.
- For change between 2009 and 2014, the 95% CI difference is (0.128, 1.33) which implies the change is significantly different.

Going forward

• In future, the spreadsheets containing the statistics will have an extra feature (an extra column) to indicate if the change between the 2 dates is significant

Concept #2

Time Series -- reducing variance of estimates by using full time series

 Conditional probability models are used to combine probabilities from a number of years to give an overall assessment of the likelihood of land cover change.

An Example Using Landsat Data

2016 Landsat image – true colour display (Mandurah to Dawsville inlet)

2016 Vegetation classification

An Example Using Landsat Data

2017 Landsat image – true colour display (Mandurah to Dawsville inlet)

2017 vegetation classification

An Example Using Landsat Data -- Results

Comparison of single-date classification – 2016 in red, 2017 in green

Comparison of CPN outputs – 2016 in red, 2017 in green

How does it work for Urban Monitor?

- Our team has used the conditional probability modelling method using Landsat full time series data for long standing successful project such as the Land Monitor.
- The same method can be applied to Urban Monitor data.
 - requires regular time dates in the time series, for example, every year
- If we have full time series, the conditional probability modelling has potential to reduce the noise in the data and thereby reduce the variability in the estimates

THANK YOU

Data61/RSII Joanne Chia

- t +61 9 933 6138
- e joanne.chia@data61.csiro.au
- w www.data61.csiro.au

www.data61.csiro.au

