Managing Water Quality in Urban Lakes and Wetlands

Wetland Management and Restoration

Thursday 6th September

Atrium Theatrette

What the Swan Coastal Plain might have looked like...

 Interconnected swamps, wetlands, creeks, inlets and the River

Planning and developing for Perth

Constraining and regulating the wetlands

Draining the swamps

Burying the creeks

urbaqua

Working the landscape

 The best soils for growing were on the swampy land

Image source: WA Museum

Adapting the landscape

• Lake Monger c1912

Image source: WA Museum

Just keep building...

urbaqua

• The water is still there!

- Historical site of Maylands Brickworks clay pits
- Now three hydraulically connected lakes
- Former clay pits allowed to fill naturally with groundwater seepage
- Brickworks fed with groundwater
- Stormwater discharges to all three

- 54 water bodies:
 - Lined/unlined
 - Stormwater and/or groundwater fed

What are the issues?

- Algal blooms (eutrophication)
- Mosquitos and Midges
- Sedimentation
- Weed growth
- Poor aesthetics (litter, water colour, smell)
- Fish deaths and
- Bird excrement

Poor water quality is a cause and/or consequence of all

How do we respond?

- - · Water sensitive urban design
 - Community education
 - Maintenance
 - Reduced fertilizer use...
- - Phosphorous inactivation
 - Algicide
 - Bioaugmentation
 - Floating wetlands
 - Aeration
- Modification
 Expensive!
 - Reshaping
 - Revegetation
 - Dredging

Catchment management

- Water sensitive urban design
- Community education
- Construction management
- Maintenance
- Reduced fertilizer use

Treatment

- Phosphorous inactivation
- Algicide
- Bioaugmentation
- Floating wetlands
- Aeration
- Physical removal

Modification/design

- Reshaping
- Revegetation
- Dredging not a new idea:
 - Lake Monger c1934
 - Lake Minnawarra 2018

Image sources: WA Museum, City of Armadale

- Frequency of occurrence
- Community attention
- Location
- Downstream impacts
- Ecological impacts

- Environmental condition
 - Shape & size
 - Edge type
 - Inflows & outflows
 - Lined or unlined
 - Natural, modified or artificial
- Community preferences
 - Is the system understood?
 - Is the system used and/or valued?
 - How much disruption can be accepted?
- And the elephant in the room...

Meaningful monitoring

- What do we want/need to know?
- Inspection/record keeping
 - When/where an issue arises (and when did it go away)?
 - Who has complained, when & about what?
 - What is the weather like (cloudy/bright, hot/cold, wet/dry)?
 - A picture can tell a thousand words...
- Water quality
 - Basic nutrient suite (TN, TKN, NOx, NH₄, TP, PO₄)
 - Dissolved oxygen, Temperature, EC, pH
 - Suspended solids/turbidity
 - Others based on <u>defined</u> objective!! (metals, chlorophyll etc...)

Case study – Maylands Lakes

- What did the data tell us?
 - Nitrogen frequently above guidelines in the water column
 - Phosphorous rarely above guidelines in the water column
 - Strong correlation between seasonal rainfall & nutrient concentrations
 - High levels of nutrients present in sediment
- So what causes the algal blooms?
 - Groundwater? not likely considering relatively good quality of Brickworks Lake
 - Stormwater runoff? likely given numerous direct discharges & seasonal correlation
 - Management practices? likely given evidence of floating grass clippings (also; fertiliser, rubbish)
 - Sediment? likely build-up over time since establishment including dead algae, grass clippings, guano, and rubbish

Case Study – Gosnells Lakes

- What did the data tell us?
 - Mix of issues including:
 - Algal blooms
 - Botulism
 - Mosquitoes
 - Poor hydraulics
 - Litter/silt and other aesthetic issues
 - Algal blooms more prevalent when lakes are unlined and/or topped up with groundwater
 - WQ sampling needs to be supported by well timed maintenance and good general record keeping to obtain its full value

Case study recommendations

- Maylands Lakes
 - Phoslok application
 - Revegetation of suitable riparian areas
 - Floating wetlands
 - Modification of lake shape
 - Dredging
 - Community education
 - Gross pollutant traps (later added at request of community)
- Gosnells Lakes
 - Monitoring & maintenance changes
 - Management trials including some of the above

Take home messages

- ✓ Wetland management requires a combination of strategies that may be different for each site
- ✓ It may not be realistic to expect pristine water quality in all wetlands specially if they are 'treatment' wetlands protecting a higher value downstream environment!
- ✓ Monitor with a purpose in mind and remember that regular inspection and good record keeping are paramount
- ✓ Community engagement is critical for:
 - Shared understanding on the values associated with individual wetlands
 - Building consensus on a suite of strategies (and the associated costs!)
 - Educating and informing for behaviour change

Thank you for your time

Helen Brookes helen@Urbaqua.org.au

