

Constructed feature lakes – health issues, guidance and management

Constructed Feature Lakes - Background

- Highly modified "natural" wetlands
- Expn. sgnf. drying last 30 years
- Created in residential estates
- Sgnf. visitation/passive rec. e.g.
 - walking, cycling & adjacent parkland recreation.
- Generally <u>no direct water contact</u>
- Primarily incidental contact/risks
- Oft. utilised for parkland irrigation

Image: Ridgewood Lake - Courtesy of City of Wanneroo

Health Issues/Concerns

- Stagnant water inadequate/ lack of aerator/ fountain operation
- Dis-coloured water brown/green
- Algal scum
- Odour impacts
- Aerosols respiratory effects
- Acts as local stormwater sump
- Subject to wastewater overflows
- Sediment condition
- Impact upon residential amenity (restricts opening windows, recreation etc.)
- Use for irrigation purposes skin contact etc.

Cyanobacteria/ Blue-green Algae (BGA) Risk

- Most const. lakes likely to have sgnf. BGA issues.
- Few local government authorities have:
 - Investigated their lakes/wetlands for BGA
 - Regular/routine BGA monitoring programs/plans.
- Nature & sgnf. of risk of exposure sources, cyanobacteria & cyanotoxins - poorly understood.
- Little known about <u>BGA toxins</u> in Perth lakes.
- Climate change forecast situation will get worse
 Note: Water Research Australia Health Stream July 2018 —
 'Cyanobacteria and Climate Change'

Why is BGA a problem?

- BGA impacts water quality
- Some species toxins harmful to people & animals.
- Algae & assoc. toxins may be present in lakes w/out being visible.
- Can be mixed in the water column, or produce a smelly, thick scum on water surface.
- Not all blooms are toxic, but in the interest of public health & safety should be treated as toxic until tested.
- Algal blooms may occur every year with varying severity & can persist for weeks, months or even an entire season if the right conditions exist.

Types of BGA Toxins/Health Effects

- microcystins, nodularins, cylindrospermopsin, anatoxins & saxitoxins
- Pot. neurotoxic effects of non-encoded amino acid
 BMAA (β- N-methylamino- I-alanine) some BGA:
 - postulated in human neurodegenerative diseases (e.g. Parkinsons disease).
- Lipopolysaccharides (LPS) cyanobacterial cell wall:
 - skin irritation on contact & GI symptoms if ingested.

Note: Dermal irritation is side of things according to literature & public health experts - generally self limiting in nature.

Secondary recreation focus is more on inhalation risks.

General features of cyanotoxins

Toxin group ^a	Primary target organ in mammals	Cyanobacterial genera ^b		
Cyclic peptides				
		Microcystis, Anabaena, Planktothrix (Oscillatoria), Nostoc,		
Microcystins	Liver	Hapalosiphon, Anabaenopsis		
Nodularin	Liver	Nodularia, Anabaena, Planktothrix (Oscillatoria), Aphanizomenon		
Alkaloids				
Saxitoxins	Nerve axons Anabaena, Aphanizomenon, Lyngbya, Cylindrosperm			
Anatoxin-a	Nerve synapse	Anabaena, Planktothrix (Oscillatoria), Aphanizomenon		
Anatoxin-a(s)	Nerve synapse	Anabaena		
Aplysiatoxins	Skin	Lyngbya, Schixothrix, Planktothrix (Oscillatoria)		
		Cylindrospermopsis, Aphanizomenon, Umezakia, Raphidiopsis,		
Cylindrospermopsin Liver		Anabaena		
Lyngbyatoxin-a	Skin, gastrointestinal tract	Lyngbya, Schixothrix, Planktothrix (Oscillatoria)		
Lipopolysaccharides (LPSs)	Potential irritant; affects any exposed tissue	All		

a Many structural variants are known for each structural group

b This is a compilation of wordwide information, and the toxins are not produced by all species of the particular genus.

Source: Sivanen and Jones (1999)

Source: NHMRC (2008) Table 6.1 General features of the cyanotoxins (pg 93)

BGA Potential Health Issue: LPS - Skin Irritation

- Cyanobacteria: gram -ve bacteria, produce LPS
- LPS known to elicit irritant & allergenic responses in humans & animal tissues.
- Skin irritation (inc. eyes, nose & throat) via aerosols/ spray-type irrigation.
- Cyanobacterial LPS thought to be less potent (weakly toxic) than pathogenic gram -ve bacteria.
- Cyanobacterial LPS unlikely to initiate skin reactions in healthy people who may become exposed.

Source – National Health and Medical Research Council, 2008, 'Guidelines for Managing Risks in Recreational Water'

Questions to understand BGA risk?

- What is happening in the lakes/wetlands?
- What are the pot. toxin producers & toxin conc risk?
- When are the high & low risk periods?
- When should or should not lake water be used for irrigation? or under what conditions?

Image: Beeliar Constructed Lake – Courtesy of City of Cockburn

Reported Blue-Green Algal Blooms in Constructed Lakes 2014 to 2018

Notification Date	Water Body Name	Suburb	LGA District(s)	Sample Date	Class/Genius/Species/Toxins	Cell counts (cells/mL)	Biovolume (mm3/L)	BvIme Exceed Factor	Warn Signs	Media Y/N
24/05/2016	Lake Eyre	Middleton Beach	Albany	20/05/2016	Microcystis flos-aquae	114,130	2.51	0.6	Yes	No
24/05/2016	Lake Eyre	Middleton Beach	Albany	20/05/2016	Microcystis spp.	43,430	3.78	0.9	Yes	No
12/09/2014	Brickworks Lake	Maylands	Bayswater	26/02/2015	Oscillatoria spp.	7,272	31.09	3.1	Yes	Yes
22/09/2014	Lake Brearly	Maylands	Bayswater	22/09/2014	Microcystis spp.	958,187	83.36	20.8	Yes	Yes
18/06/2018	Lake Brearly	Maylands	Bayswater		cyanobacteria			0.0	Yes	Yes
12/09/2014	Lake Bungana	Maylands	Bayswater	3/09/2014	Limnothrix spp.	1,045,532	12.55	3.1	Yes	Yes
12/09/2014	Lake Bungana	Maylands	Bayswater	22/09/2014	Microcystis spp.	185,537	16.14	4.0	Yes	Yes
12/09/2014	Lake Bungana	Maylands	Bayswater	26/02/2015	Cylindrospermopsis raciborskii	2,750,028	115.50	28.9	Yes	Yes
15/08/2017	Beeliar Lake	Beeliar	Cockburn	10/08/2017	Cylindrospermopsis raciborskii 2,040,200 85.		85.69	21.4	Yes	Yes
15/08/2017	Beeliar Lake	Beeliar	Cockburn	24/01/2018	cyanobacteria, cylindrospermopsin, saxitoxin					Yes
24/01/2018	Beaumont Lake	Success	Cockburn	24/01/2018	cyanobacteria, microcystin/nodularin, cylindrospermopsin, saxitoxin					
24/01/2018	Harmony Lake	Atwell	Cockburn	24/01/2018	3 cyanobacteria, cylindrospermopsin, saxitoxin					
9/11/2016	Alexandria Blvd Reserve Lake	Canning Vale	Gosnells	12/12/2016	Microcystis spp.	74,000	6.44	1.6	Yes	No
31/10/2016	Cadoux Reserve Lake	Canning Vale	Gosnells	12/12/2016	Microcystis spp.	1,100,000	72.00	18.0	Yes	No
7/05/2018	Blue Gum Lake	Booragoon	Melville	4/05/2018	Microcystis aeruginosa			0.0	Yes	No
7/08/2018	Blue Gum Lake	Booragoon	Melville	2/08/2018	Microcystis aeruginosa	107,396	9.34	2.3	Yes	No
2/03/2018	Lake McDougal	Como	South Perth	31/01/2018	Dolichopsermum circinale 579,740 144		144.94	36.2	Yes	Yes
2/03/2018	Lake Hurlingham	South Perth	South Perth	31/01/2018	Dolichospermum spiroides 1,593,780 398.45		39.8	Yes	Yes	
28/02/2018	Egerton Park Lake	Aveley	Swan	23/01/2018	8 Dolichospermum sigmoideum 39,030 (0.0	?	No	
26/02/2015	Sherlock Lake	Jane Brook	Swan	25/02/2015	cyanobacteria 0		0.0	Yes	No	

BGA Blooms in Constructed Lakes

Egerton Lake West - 20/04/2012 – possibly Microcystis sp. &/or Dichlospermium sp. Image - Courtesy of City of Swan Egerton Lake West – 10/06/2014 – possibly *Microcystis sp.* - Image courtesy of City of Swan

BGA toxin factors

- Not all strains of pot. toxic BGA carry genes rqd for toxin prod
- Factors which trigger toxin prod. not well understood
- BGA blooms often contain a mixture of toxin producing & nonproducing strains - proportions can vary over bloom duration.
- Toxin prod. is <u>strain dominant</u>:
 - millions of cells may produce no toxin
 - A few thousand cells may produce large quantity of toxin
- Toxin conc's. in small shallow systs. persist weeks months depending upon bloom severity
- Not possible to <u>reliably</u> predict if bloom includes toxin-capable strains will produce toxin or how much may be produced.

Water Analysis for BGA Toxins

Disadvantages

Local lab's don't undertake toxin analysis (add time, cost)

Advantages:

- Pot. reduce water sampling triggered by high biovolume.
- Reduced analysis & human resource time.
- Eastern States lab's undertake quantitative toxin tests:
 - · Liquid chromatography-mass spectrometry

Note: Symbio Laboratories - Perth receival facility, BGA toxin analysis undertaken in Brisbane:

• Analyse 5 main toxins & sev. sub species (LR, RR, YR etc.).

Alternative potential toxin analysis:

 Rapid test kits (qualitative & quantitative) - interim management tool (accuracy?)

Rationale for BGA Toxins Analysis

- Green water is not aesthetically pleasing
 - May not be as much of a public health risk
 - e.g. absence of toxins when toxins have been tested.

Note: Seqwater - pioneered Australia's first program focused on managing waterways for **cyanotoxins**, rather than proxy indicators.

http://www.seqwater.com.au/recreation/blue-greenalgae-and-recreation

Seqwater BGA Toxin Monitoring

- Analyse amount of toxins dissolved in water.
- Toxin conc. primary indicator for health risks.
- Presence of scum priority over cyanotoxins.
 - i.e. when scum risk id. is medium or low.
- Toxin prod. vary week to week during bloom
 - dominant sp., cell death & toxin release.

Seqwater Recreational Toxin Trigger Values

Recreational toxin triggers							
Cyanotoxin	Unit	Low level	Medium level	High level	Extreme level		
Microcystin	ug L ⁻¹	< 3	≥ 3	≥ 10	≥ 25		
Saxitoxin	ug L ⁻¹	< 9	≥ 9	≥ 30	≥ 75		
Cylindrospermopsin	ug L ⁻¹	< 3	≥ 3	≥ 10	≥ 25		
Nodularin	ug L ⁻¹	< 4	≥ 4	≥ 13	≥ 30		
Anatoxin-a	ug L ⁻¹	< 3	≥ 3	≥ 10	≥ 25		
Note: ug L ⁻¹ = micrograms per litre. Toxin concentration in the lake is measured in units, by the amount of toxins (microgram) per volume of water (litre).							

- High Level = Lake closed for primary contact (in-water) recreation.
- Extreme Level (EL) = Advisory notice issued for secondary contact (on-water) recreation.

Note: EL: Weekly toxin tests. Advisory lifted when two consec. water quality test results w/in acceptable limits.

NHMRC, 2008, Freshwater Guideline Levels for Cyanobacteria in Recreational Waters

Organism/ Toxin	Level 1 - Surveillance	Level 2 - Alert Mode - Caution	Level 3 - Action Mode
cyanobacteria		Biovolume ≥ 0.4 to <4 mm3/L combined total (known toxin producer dominant)	Biovolume ≥ 4 mm3/L combined total (known toxin producer dominant)
cyanobacteria	Biovolume ≥ 0.04 to <0.4 mm3/L combined total	Biovolume ≥ 0.4 to <10 mm3/L combined total	≥ 10 mm3/L total biovolume
cyanobacteria			scums consistently present
microcystins			≥ 10 µg/L total
Microcystis aeruginosa	≥500 to <5000 cells/mL	≥5,000 to <50,000 cells/mL	≥ 50, 000 cells/mL toxic

Recreational Water Primary Contact Trigger Levels - Cyanobacteria

- Over conservative for typical lake/ irrigation exposure:
 - incidental contact (cont. land surface),
 - inhalation of droplets/aerosolised toxins etc.
- Current Gap known toxin producers present but not dominant (>75% of tot cyanobacteria biovolume).
- Recommend risk approach to interpreting NHMRC Guidelines based on <u>likely means of exposure</u> etc.
- Any new trigger levels ideally evidenced based/ scientific validation (this data is not likely available).
- Cell counts in interim may still be informative

Potentially harmful microorganisms - in sewage affected constructed feature/ irrigation lakes

Organism Category	Organism	Species	Disease/Illness	Infected Body Area	Transmission/ Method Aquired
	Aeromonas	hydrophilia	gastroenteritis, skin infections	GI, skin	break in skin - can lead to infected wounds
	Leptospira	spp.	Leptosporosis	skin,eyes	skin contact with contam. water (animal urine) - in warmer regions
- <u>r</u>	Mycobacterium	ulcerans	haemorrage	skin	cont. water, soil, veget., aerosols, in disease areas (not in WA)
Bacteria	Pseudomonas	aeruginosa		skin	freshwater - warm conditions
Ba	Salmonella	spp.	skin ulcers	GI, skin	swimming freshwater exposed wounds, cuts
	Shigella	spp.		GI	touching cont. surfaces - fecal-oral route
	Staphylococcus	aureus		skin	touching cont. surfaces - fecal-oral route
	(C) Cestodes		GI + anaemia	skin	skin penetration
Helminths	(N) Ancylostoma	duodenale		skin	walking barefoot, ingestion of larvae
<u>F</u>	(N) Enterobius	vermicularis	GI + anaemia	skin	skin penetration
ř	(N) Necator	americanus	GI - diarrhoea, abdom. pain, cognitive develop. & stunt growth	skin	walking barefoot
	Adenoviruses		respiratory disease, gastroenteritis	respiratory	touching cont. surfaces - faecal oral route, mouth, nose, eyes
	Coxsackie				touching cont. surfaces - faecal oral route mouth, nose
	Hepatitis	E			touching cont. surfaces - faecal oral route
Viruses	Hepatitis	Α	Hepatitis A		touching cont. surfaces - faecal oral route (survive in environ. /on hands for several hrs)
5	Noroviruses		diarrhoea, vomiting		touching cont. surfaces - faecal oral route, airborne?
	Polioviruses		Poliomyelitis, Indicator (vaccine strains)		touching cont. surfaces - faecal oral route, respiratory droplet
	Rotaviruses				touching cont. surfaces - faecal oral route, respiratory droplet

Reported Wastewater Overflow Events into Constructed/Ornamental Type Lakes 2010 to 2018

Event Date	OvFl Suburb	LGA District	Affected Water Body	Const. Lake	WW Q (kL)	Warning Signs	Water Samples	Cause Overflow	Cause Overflow Specifics
19/06/2016	PIARA WATERS	City of Armadale	Park Piara Waters - living stream	No	5	Yes	No	Blockage	Rags
12/02/2012	Belmont	City of Belmont	Centenary Park Lake	Yes		Yes	Yes	Infrastructure	Sewer main - burst
19/02/2016	BEELIAR	City of Cockburn	Beeliar Lake	Yes	2	No	No	Blockage	
11/10/2010	Canning Vale	City of Gosnells	Alexandria Blvd Reserve Lake	Yes	0.1	Yes	No	Blockage	fat & tree roots
23/09/2014	HILLARYS	City of Joondalup	Mawson Park Lake	?	1	No	No	?	
27/04/2014	KARDINYA	City of Melville	Frederick Baldwin Park Lake/ Comp Basin	?	109	Yes	No	Blockage	Tree roots
28/07/2016	KARDINYA	City of Melville	Frederick Baldwin Park Lake/ Comp Basin	?	180	Yes	No	Blockage	Tree roots
31/08/2017	NEDLANDS	City of Nedlands	Aberdare Rd Comp Basin, Kilgour Park, adjac to Sir Charles Gairdner Hospital	?	430	Yes	Yes	Equipment	Pump failure
27/03/2010	Glendalough	City of Stirling	Wetland/Swamp	No	3	Yes	No	Blockage	fat
20/10/2011	Stirling	City of Stirling	Candella Square Lake	Yes	25	Yes	No	Equipment	sewer PM - failure
30/03/2013	Stirling	City of Stirling	Candella Square Lake	Yes	10	Yes	No	Blockage	
27/02/2014	Stirling	City of Stirling	Candella Square Lake	Yes	5	Yes	No	Blockage	Rags & debis
4/11/2015	Stirling	City of Stirling	Candella Square Lake	Yes	20	Yes	No	Infrastructure	Sewer main - burst
18/05/2011	Shenton Park	City of Subiaco	Jualbup Lake	?		Yes	Yes	Blockage	sewer main
28/08/2013	Shenton Park	City of Subiaco	Jualbup Lake	?	0.72	Yes	No	Blockage	Tree roots
14/05/2013	BEECHBORO	City of Swan	Altone Park ornamental lake	No	2	Yes	No	Blockage	
5/05/2018	ELLENBROOK	City of Swan	Brook Park/Wood Lake (small)	Yes	10	Yes	No	Blockage	comb. of concrete, brick fragments & fat
7/05/2018	ELLENBROOK	City of Swan	Brook Park, Wood lake	Yes	1	Yes	No	Blockage	comb. of concrete, brick fragments & fat
27/06/2012	Henley Brook	City of Swan	Lake Yakine	No		No	No	Equipment	SPS Alarm
6/08/2012	The Vines	City of Swan	Golf course pond/lake	?	5	Yes	No	Equipment	
29/03/2016	AUSTRALIND	Shire of Harvey	Treendale Park Lake	Yes	10	No	Yes	Infrastructure	Sewer main - burst

Sewage Overflows into Constructed Lakes

Image: Health Warning Signs Erected – Jualbup Lake – City of Subiaco

Image: Wastewater entering Jualbup Lake via stormwater drain - City of Subiaco

Guidelines - Recreational Water - Bacterial (Enterococci) Generic Trigger Levels

Primary Contact

1 off result: > 700 MPN/100mL

2 results in-a-row: > 100 MPN/100mL

Secondary Contact

1 off result: > 7000 MPN/100mL

2 results in-row: > 1000 MPN/100mL

Note: These DOH alert levels were first established and adopted in 2015, in application to a ministerial statement for Champion Lakes.

Monitoring Requirements - Guidelines for the Non-potable Uses of Recycled Water in WA

Exposure Risk Level (level of human contact)	Potential end-uses	Parameter	Compliance value ¹¹	Monitoring frequency	
		E. coli ¹	<1 MPN or cfu /100mL	Weekly ^d	
		pН	6.5 - 8.5	Continuous online	
High	Urban irrigation with unrestricted access & application ^{a,17}	Turbidity	< 2 NTU (95%ile) ¹⁰ < 5 NTU (maximum)	Continuous online	
High			UV ¹³		
		Disinfection	UVT ¹⁴ >75%	Continuous online	
			UV intensity: drop <25% at 254nm	Continuous online	
			UV dose: 40 - 70ml/cm ²		
		E. coli	<10 MPN or cfu /100mL	Monthly ^d	
	Urban irrigation with some restricted access & application ^{b,17} Fountains & water features	рH	6.5 - 8.5	Continuous online	
		Turbidity	< 5 NTU (95%ile) ¹⁰	Continuous online	
Medium			UV ¹³		
		II JISHIHACHOH	UVT ¹⁴ >75%	Continuous online	
			UV intensity: drop <25% at 254nm	Continuous online	
			UV dose: 40 - 70ml/cm ²		
		E. coli	<1000 MPN or cfu /100mL	Monthly ^d	
Low	Communal sub-surface irrigation ¹⁷ • Urban irrigation with enhanced restricted access & application irrigation ^{c,17}	рН	6.5 - 8.5	Continuous online	
	with enhanced restricted access & application imgation	SS ¹⁸	30 mg/L	Monthly	

Source: Modified from 'Table 8: Minimum ongoing monitoring requirements' from the 'Guidelines for the Non-potable Uses of Recycled Water in WA'.

Recycled Water: Irrigation Area - Access Control Requirements

- Medium or Low exposure RL:
- Night time irrigation:
 - Commence after 9pm,
 - Cease min 1hr before sunrise.
- Withholding periods:
 - (Table 13) &/or
- Simple non-continuous barriers – direct public towards signage, or
- Fencing w/ lockable gates.

Table 13: Irrigation area minimum withholding times

Exposure Risk Levels	Minimum Withholding Times				
High	Not required				
Medium	1 hour				
Low	4 hours				
Extra Low	Not applicable				

Recommended Monitoring for Irrigation Purposes

- Seasonal monitoring program regular (fortnightly – monthly):
 - Bacteria (E.Coli & Enterococci)
 - Phytoplankton cell counts/biovolume
 - BGA toxins (less frequent)

Event based monitoring:

- wastewater overflow events,
- heavy rainfall events,
- bloom/scum evident

Constructed Lake – Notional Bacterial Irrigation Trigger Values

Potential End Use Management	Interpretation - End Use Management	Human Contact Exposure Level	Recommended Level
Unrestricted access & application	Full public contact, no control to restrict access or minimise spray drift	High	E. coli < 10 MPN or cfu/100mL
Some restricted access & application, fountains & water features	Display signs - irrigation water quality is variable & public should avoid contact	Medium	E. coli < 100 MPN or cfu/100mL
Enhanced restricted access & application	Display signs (see above) + No access after irrigation for 1-4 hrs or until dry, or buffer zones, or drip irrigation, spray drift controls etc.	Low	E. coli < 1000 MPN or cfu/100mL

Irrigation Management Measures Minimising Spray Drift

- Purpose prevent/reduce risk assoc. human contact/expos.
- Avoid: drinking fountains, buildings, playgrounds & BBQ's picnic table areas
- Control measures examples include:
 - Buffer zones: to nearest dwellings or public areas
 - Tree/shrub screens
 - Irrigation times: operate only during low risk expos. 9pm 5am
 - Weather wind monitoring (anemometer switching systems)
 - Sprinkler design:
 - selection of large droplet design (to reduce aerosols)
 - lower spray height to reduce wind carriage effect.
 - Avoid surface runoff or ponding (mosquito issue)

Irrigation Management Measures – Warning Signs

- Erect temp. or permanent warning signs e.g.
 "Irrigation water health risk Do not drink this water. Avoid direct skin contact or inhalation"
- Display advisory signs on irrigated areas

Environmental Drivers of Blooms

- Nutrient availability– (N & P)
- Atmospheric CO2 conc.
- Air Temperature
- † Water temperature /
 † water stratification
- Climate change...

Microcystis Bloom 2010 – Freeway Lakes — Image courtesy of DoW

Nutrient Reduction Measures

- Multi-faceted approach to achieve effective nutrient reduction entering water bodies
- May still require <u>decades</u> to deplete existing nutrient accumulation
- Reduce phosphate availability:
 - remove or cover nutrient-rich sediment, or;
 - adding phosphorus-binding clays

Note: These may provide improvement, but is likely to be temporary unless inputs are also controlled.

Nutrient Reduction Measures

- Reduce nutrients washing into roadside drains - flow into local waterways, e.g. wash cars on lawns rather on roads
- Use phosphorus-free detergents
- Reduce fertiliser use (where possible)
- Rehabilitate waterways
- Prevent land erosion (where possible).

BGA Control Methods

- Artificial mixing to disrupt buoyant cyanobacterial aggregates (aeration, mechanical mixers):
 - rate of vertical mixing rate must exceed floatation velocity of cyanobacteria strains
- Chemical control agents to kill
- Biological controls e.g. pathogens or predators.

Note: For toxic blooms, any measure which causes lysis of cyanobacterial cells – likely to release large amounts of intracellular toxin - spike in toxin levels.

General Algal Bloom Response

- BGA/algal bloom apparent:
 - Sample & analyse water confirm potentially harmful species/toxins
 - Erect health warning sign
 (precautionary measure): <u>alert</u>
 passive recreation users
 - Issue local media advisory

Note: Under no circumstance should people or their animals have direct water contact as harmful effects may result.

Acknowledgements

- Dr Stuart Helleren Aquatic Ecologist/ Phytoplankton Taxonomist - Dalcon Environmental
- Dr Cameron Veal Technical Coordinator
 - Catchment Water Quality Seqwater
- Nick Jones Manager Environmental Health – City of Cockburn
- Seqwater

Questions?

Further information:

Jared Koutsoukos

P: 9388 4933

E: Jared.koutsoukos@health.wa.gov.au